Osvita.ua Вища освіта Реферати Логіка Числення та алгебра висловлень. Реферат
Провідні компанії та навчальні заклади Пропозиції здобуття освіти від провідних навчальних закладів України та закордону. Тільки найкращі вищі навчальні заклади, компанії, освітні курси, школи, агенції. З питань розміщення інформації звертайтесь за телефоном (044) 200-28-38.

Числення та алгебра висловлень. Реферат

Числення висловлень і алгебра висловлень. Основні проблеми числення висловлень

Довільну формулу F числення висловлень можна змістовно інтерпретувати як складене висловлення, істинність або хибність якого залежить від істинності елементарних висловлень, що до нього входять. Таким чином, кожній формулі F числення висловлень можна аналогічно тому, як це було зроблено в алгебрі висловлень, поставити у відповідність функцію істинності f.

Виникає питання, як пов’язано таке змістовне "істиннісне" тлумачення (інтерпретація) формул числення висловлень з їхньою формальною вивідністю.

Теорема 5.5. Будь-яка теорема числення висловлень ЧВ є тотожно істинним висловленням (тавтологією).

Доведення. Тотожна істинність усіх аксіом легко перевіряється безпосередньо побудовою відповідних таблиць істинності для кожної з них (рекомендуємо це зробити самостійно).

Відтак, доведемо, що обидва правила виведення числення висловлень перетворюють тотожно істинні формули у тотожно істинні.

Якщо A (p1, p2,..., pn) - тотожно істинна формула, то для довільного набору значень a1, a2,..., an її пропозиційних змінних A (a1, a2,..., an) є істинною. Отже, тотожно істинною буде і будь-яка формула A, що отримується з формули A шляхом підстановки замість пропозиційних змінних p1, p2,..., pn довільних формул B1, B2,....., Bn, оскільки останні можуть набувати лише значень 0 або 1.

Доведемо, що коли формули A і A®B є тотожно істинними, тоді формула B, яку ми дістаємо з них за правилом висновку, також є тотожно істинною. Припустімо супротивне: нехай B не є тотожно істинною формулою, тобто існує набір значень її змінних, на якому вона набуває значення 0. Тоді підставимо цей набір у формулу A®B, оскільки A є тавтологією, то дістанемо вираз 1®0, значенням якого є 0. Останнє суперечить припущенню про тотожну істинність формули A®B.

Таким чином, ми переконалися в тому, що всі аксіоми числення висловлень ЧВ є тотожно істинними формулами алгебри висловлень, а застосування обох правил виведення (підстановки і висновку) до тотожно істинних формул знову приводить до тотожно істинних формул. Отже, всі вивідні формули (теореми) числення висловлень є тотожно істинними формулами алгебри висловлень.

Справедливою є й обернена теорема, яку подамо без доведення.

Теорема 5.6. Будь-яка тотожно істинна формула алгебри висловлень є теоремою числення висловлень ЧВ.

Дві останні теореми дозволяють вирішити три важливі проблеми числення висловлень: проблему несуперечності, проблему повноти і проблему розв’язності. Розглянемо їх послідовно.

1. Проблема несуперечності.

Для кожної формальної теорії кардинальним є питання несуперечності. Справді, така теорія будується послідовним приєднанням нових теорем, які формально виводять з аксіом за допомогою правил виведення. Отже, немає жодної гарантії, що в цьому процесі ми не дійдемо до суперечності. Інакше кажучи, виникає питання, чи при поступовому нагромадженні теорем формальної теорії (числення) не трапиться так, що одна з теорем суперечитиме іншим. Саме так виникає проблема несуперечності числення.

Числення є несуперечним, якщо неможливо одночасно вивести з аксіом числення як формулу A, так і її заперечення ØA.

Наслідок 5.1. Числення висловлень ЧВ є несуперечною формальною теорією.

Справді, якщо формула A вивідна у численні висловлень, то формула ØA не може бути вивідною, бо за теоремою 5.5 формула A є тотожно істинною в алгебрі висловлень, а формула ØA - тотожно хибною. Отже, ØA не може бути теоремою числення висловлень ЧВ.

2. Проблема повноти

Інша проблема, що виникає при дослідженні різних числень висловлень: чи будь-яка тотожно істинна формула алгебри висловлень буде вивідною в заданому численні? Це питання й являє собою проблему повноти для числення висловлень.

Смисл такої постановки питання полягає в тому, що при побудові числення потрібно знати, чи достатньо аксіом і правил виведення даного числення для того, щоб можна було вивести будь-яку формулу, яка в змістовному розумінні є тотожно істинною.

Наслідок 5.2. Числення висловлень ЧВ є повним.

Справедливість цього твердження безпосередньо випливає з теореми 5.6.

У математичній логіці існує й інше поняття повноти системи аксіом (або числення), що ґрунтується на неможливості доповнення системи аксіом будь-якою формулою, яку не можна вивести з даних аксіом.

3. Проблема розв’язності

Розв’язувальним методом для формальної теорії T називають метод, за допомогою якого для довільної формули A з T можна за скінченне число кроків визначити, чи буде A теоремою, чи ні.

Числення T називають розв’язним, якщо для T існує розв’язувальний метод, у противному разі - формальна теорія T є нерозв’язаною.

Наслідок 5.3. Числення висловлень ЧВ є розв’язною теорією.

Доведення. Нехай A - довільна формула числення ЧВ. Побудуємо для неї таблицю істинності і розглянемо її останній стовпчик. Якщо він містить лише одиниці, то A - тотожно істинна формула і за теоремою 5.6 є теоремою ЧВ. У противному разі (останній стовпчик таблиці істинності містить хоча б один нуль), A - не тавтологія і значить, A не є теоремою.

Зрозуміло, що всі ці дії можна зробити за скінченне число кроків.

Нарешті, розглянемо ще одну важливу проблему для формальних теорій.

Система аксіом числення називається незалежною, якщо жодна з аксіом цієї системи не може бути виведена з інших аксіом системи.

Зрозуміло, що аксіому, яку можна вивести з інших, можна виключити зі системи аксіом, і при цьому множина теорем теорії залишиться тією ж самою (тобто отримаємо рівносильне числення). Отже, залежна система аксіом у певному розумінні менш досконала, ніж незалежна система, бо вона містить зайві аксіоми.

Можна довести, що системи аксіом числень висловлень ЧВ і ЧВ1 є незалежними.

Існують й інші формальні теорії, що означаються і досліджуються у математичній логіці: числення предикатів, різноманітні числення (теорії) першого порядку, числення з рівностями, формальна арифметика тощо. У наступних розділах розглянемо основні ідеї і принципи побудови однієї з таких теорій - числення предикатів.


24.10.2011

Провідні компанії та навчальні заклади Пропозиції здобуття освіти від провідних навчальних закладів України та закордону. Тільки найкращі вищі навчальні заклади, компанії, освітні курси, школи, агенції.

Щоб отримувати всі публікації
від сайту «Osvita.ua»
у Facebook — натисніть «Подобається»

Osvita.ua

Дякую,
не показуйте мені це!