Osvita.ua Середня освіта Форум педагогічних ідей Математика Тригонометричні рівняння та нерівності
Рейтинг
16

Урок з математики

Тригонометричні рівняння та нерівності

Оцініть публікацію
Рейтинг статті: 4 з 5 на основі 4 оцінок.

Мета: систематизувати і узагальнити знання, і уміння учнів з даної теми; підготувати їх до тематичного оцінювання; розвивати мислення, пам'ять; виховувати уважність, відповідальність, культуру математичних записів.

Тип уроку: узагальнення та систематизація знань учнів.

Хід уроку

І. Організацій момент

Учитель повідомляє тему, мету уроку.

ІІ. Перевірка домашнього завдання

1. Перевірка наявності домашнього завдання.

2. Дати відповіді на запитання.

ІІІ. Усне опитування

1. Яке рівняння називається найпростішим?

2. Яке рівняння називається однорідним?

3. Яке рівняння зводиться до алгебраїчного квадратного?

4. Яке рівняння розв'язується винесенням спільного множника за дужки?

IV. Математичний диктант

1. Розв'язати рівняння:

sin 4x = 0;

cosx/5 = 1;

tgx+4 = 0;

sin(p/2-x) = -1;

cos(p/2+x) = 1;

3cos2x-7 = 0;

sin2x = ½;

V. Займи позицію

Три учні працюють біля дошки:

а) (cos2x/2-sin2 x/2)2 - sin2x = -1/2;

cos2x-sin2x = -1/2;

cos2x = -1/2;

2x = + arcos(-1/2) + 2pn, n є Z;

2x = + (-p/3) + 2 pn, n є Z;

x = + (-2p/3) + 4pn, n є Z;

б) cosx - sinx = 2;

cosp/6cosx-sinp/6sinx = 1;

cos(p/6-x) = 1;

p/6-x = 2pn, n є Z;

-x = 2pn-p/6;

x = p/6-2pn, n є Z.

в) 2sin2x-5sinx+2 = 0.

Нехай sinx = t;

2 t2-5 t+2 = 0;

D = 25-4*2*2+9;

t1 = 5+3/4 = 2;

t2 = 5-3/4 = ½;

sin x = 2;

x(-1) arcsin2 + pn, n є Z;

x + (-1) p/6 + pn.

Після того як всі завдання розв'язані на дошці, пропоную учням, яким важко знайти спосіб розв'язання тригонометричних рівнянь і нерівностей, проговорити алгоритм розв'язання кожної вправи.

Учні, які добре володіють програмовим матеріалом, розв'язують вголос вправу № 59 (26).

sin2x + sin(x-p/4) = 1.

VI. Підсумок уроку

Відповідаю на запитання учнів і аналізую написання математичного диктанту, та роботу кожної групи.

Тест:

1. Чому дорівнює arcsin(-0,5):

а) p/3;

б) -p/6;

в) -p/4;

г) p/2?

2. Яка з функцій є парною:

а) y = sinx;

б) y = cosx;

в) y = tgx.

3. Функція y=arcos x парна чи не парна:

а) парна;

б) не парна;

в) ні парна, ні непарна.

4. Яка область визначення функції y=arcos x:

а) вся числова вісь;

б) проміжок (-1; 1);

в) проміжок (-p/2; p/2)?

5. Обчислити arcsin 1:

а) p/4;

б) p/3;

в) p/2;

г) p;

д) p/6.

6. Яка множина значень функції y=arcsin x:

а) х є R;

б) х є (0; p);

в) х є (-p/2; p/2);

г) х є (-1; 1)?

7. Якою є функція y=arcsin x:

а) спадною;

б) зростаючою;

в) не монотонна;

г) то зростає, то спадає?

VII. Домашнє завдання

Підготуватися до тематичної контрольної роботи.

1. Розв'язати рівняння:

а) ctg(x=p/3) = 1;

б) 1-cosx = 4sin2x;

в) sin2x-sin2x = 0.

2. Розв'язати систему рівнянь:

sinx*siny + cosx*cosy = 1;

sinx*cosy + cosx*siny = ½.

Освіта.ua
09.10.2008

Популярні новини
Гройсман пообіцяв скасувати «мікрорайон» для вчителів Володимир Гройсман пообіцяв скасувати постанову «Про облік дітей шкільного віку»
Чиновників і депутатів просять не йти до шкіл 1 вересня Можновладців закликали відмовитись від радянської традиції відвідання шкільних лінійок
Як викладати предмети у новому навчальному році Міністерство освіти розробило рекомендації з викладання предметів у 2017/2018 навчальному році
Електронні версії підручників для 9 класу Міністерство освіти опублікувало електронні версії підручників для розміщення у вільному доступі

Щоб отримувати всі публікації
від сайту «Osvita.ua»
у Facebook — натисніть «Подобається»

Osvita.ua

Дякую,
не показуйте мені це!