Osvita.ua Середня освіта Форум педагогічних ідей Математика Тригонометричні рівняння та нерівності
Рейтинг
16

Урок з математики

Тригонометричні рівняння та нерівності

Оцініть публікацію
Рейтинг статті: 4 з 5 на основі 4 оцінок.

Мета: систематизувати і узагальнити знання, і уміння учнів з даної теми; підготувати їх до тематичного оцінювання; розвивати мислення, пам'ять; виховувати уважність, відповідальність, культуру математичних записів.

Тип уроку: узагальнення та систематизація знань учнів.

Хід уроку

І. Організацій момент

Учитель повідомляє тему, мету уроку.

ІІ. Перевірка домашнього завдання

1. Перевірка наявності домашнього завдання.

2. Дати відповіді на запитання.

ІІІ. Усне опитування

1. Яке рівняння називається найпростішим?

2. Яке рівняння називається однорідним?

3. Яке рівняння зводиться до алгебраїчного квадратного?

4. Яке рівняння розв'язується винесенням спільного множника за дужки?

IV. Математичний диктант

1. Розв'язати рівняння:

sin 4x = 0;

cosx/5 = 1;

tgx+4 = 0;

sin(p/2-x) = -1;

cos(p/2+x) = 1;

3cos2x-7 = 0;

sin2x = ½;

V. Займи позицію

Три учні працюють біля дошки:

а) (cos2x/2-sin2 x/2)2 - sin2x = -1/2;

cos2x-sin2x = -1/2;

cos2x = -1/2;

2x = + arcos(-1/2) + 2pn, n є Z;

2x = + (-p/3) + 2 pn, n є Z;

x = + (-2p/3) + 4pn, n є Z;

б) cosx - sinx = 2;

cosp/6cosx-sinp/6sinx = 1;

cos(p/6-x) = 1;

p/6-x = 2pn, n є Z;

-x = 2pn-p/6;

x = p/6-2pn, n є Z.

в) 2sin2x-5sinx+2 = 0.

Нехай sinx = t;

2 t2-5 t+2 = 0;

D = 25-4*2*2+9;

t1 = 5+3/4 = 2;

t2 = 5-3/4 = ½;

sin x = 2;

x(-1) arcsin2 + pn, n є Z;

x + (-1) p/6 + pn.

Після того як всі завдання розв'язані на дошці, пропоную учням, яким важко знайти спосіб розв'язання тригонометричних рівнянь і нерівностей, проговорити алгоритм розв'язання кожної вправи.

Учні, які добре володіють програмовим матеріалом, розв'язують вголос вправу № 59 (26).

sin2x + sin(x-p/4) = 1.

VI. Підсумок уроку

Відповідаю на запитання учнів і аналізую написання математичного диктанту, та роботу кожної групи.

Тест:

1. Чому дорівнює arcsin(-0,5):

а) p/3;

б) -p/6;

в) -p/4;

г) p/2?

2. Яка з функцій є парною:

а) y = sinx;

б) y = cosx;

в) y = tgx.

3. Функція y=arcos x парна чи не парна:

а) парна;

б) не парна;

в) ні парна, ні непарна.

4. Яка область визначення функції y=arcos x:

а) вся числова вісь;

б) проміжок (-1; 1);

в) проміжок (-p/2; p/2)?

5. Обчислити arcsin 1:

а) p/4;

б) p/3;

в) p/2;

г) p;

д) p/6.

6. Яка множина значень функції y=arcsin x:

а) х є R;

б) х є (0; p);

в) х є (-p/2; p/2);

г) х є (-1; 1)?

7. Якою є функція y=arcsin x:

а) спадною;

б) зростаючою;

в) не монотонна;

г) то зростає, то спадає?

VII. Домашнє завдання

Підготуватися до тематичної контрольної роботи.

1. Розв'язати рівняння:

а) ctg(x=p/3) = 1;

б) 1-cosx = 4sin2x;

в) sin2x-sin2x = 0.

2. Розв'язати систему рівнянь:

sinx*siny + cosx*cosy = 1;

sinx*cosy + cosx*siny = ½.

Освіта.ua
09.10.2008

Популярні новини
Учителів можуть звільняти за аморальні вчинки, - ВСУ Верховний суд надав роз'яснення щодо звільнення педагогів, які себе скомпрометували
Нова українська школа: 9 змін, які пропонує Міносвіти Це буде «школа компетентностей», яка співпрацюватиме з батьками і враховуватиме індивідуальність
Мертві бджоли… Оновленню програм із української мови Навчання української за 29 років не змінило своєї суті й не виконує ролі, яку належить виконувати
Діти мають виходити зі школи багатомовними, - міністр За словами Лілії Гриневич, володіння кількома мовами збільшує освітні можливості дітей

Щоб отримувати всі публікації
від сайту «Osvita.ua»
у Facebook — натисніть «Подобається»

Osvita.ua

Дякую,
не показуйте мені це!