Osvita.ua Середня освіта Форум педагогічних ідей Математика Тригонометричні рівняння та нерівності
Рейтинг
16

Урок з математики

Тригонометричні рівняння та нерівності

Оцініть публікацію
Рейтинг статті: 4 з 5 на основі 4 оцінок.

Мета: систематизувати і узагальнити знання, і уміння учнів з даної теми; підготувати їх до тематичного оцінювання; розвивати мислення, пам'ять; виховувати уважність, відповідальність, культуру математичних записів.

Тип уроку: узагальнення та систематизація знань учнів.

Хід уроку

І. Організацій момент

Учитель повідомляє тему, мету уроку.

ІІ. Перевірка домашнього завдання

1. Перевірка наявності домашнього завдання.

2. Дати відповіді на запитання.

ІІІ. Усне опитування

1. Яке рівняння називається найпростішим?

2. Яке рівняння називається однорідним?

3. Яке рівняння зводиться до алгебраїчного квадратного?

4. Яке рівняння розв'язується винесенням спільного множника за дужки?

IV. Математичний диктант

1. Розв'язати рівняння:

sin 4x = 0;

cosx/5 = 1;

tgx+4 = 0;

sin(p/2-x) = -1;

cos(p/2+x) = 1;

3cos2x-7 = 0;

sin2x = ½;

V. Займи позицію

Три учні працюють біля дошки:

а) (cos2x/2-sin2 x/2)2 - sin2x = -1/2;

cos2x-sin2x = -1/2;

cos2x = -1/2;

2x = + arcos(-1/2) + 2pn, n є Z;

2x = + (-p/3) + 2 pn, n є Z;

x = + (-2p/3) + 4pn, n є Z;

б) cosx - sinx = 2;

cosp/6cosx-sinp/6sinx = 1;

cos(p/6-x) = 1;

p/6-x = 2pn, n є Z;

-x = 2pn-p/6;

x = p/6-2pn, n є Z.

в) 2sin2x-5sinx+2 = 0.

Нехай sinx = t;

2 t2-5 t+2 = 0;

D = 25-4*2*2+9;

t1 = 5+3/4 = 2;

t2 = 5-3/4 = ½;

sin x = 2;

x(-1) arcsin2 + pn, n є Z;

x + (-1) p/6 + pn.

Після того як всі завдання розв'язані на дошці, пропоную учням, яким важко знайти спосіб розв'язання тригонометричних рівнянь і нерівностей, проговорити алгоритм розв'язання кожної вправи.

Учні, які добре володіють програмовим матеріалом, розв'язують вголос вправу № 59 (26).

sin2x + sin(x-p/4) = 1.

VI. Підсумок уроку

Відповідаю на запитання учнів і аналізую написання математичного диктанту, та роботу кожної групи.

Тест:

1. Чому дорівнює arcsin(-0,5):

а) p/3;

б) -p/6;

в) -p/4;

г) p/2?

2. Яка з функцій є парною:

а) y = sinx;

б) y = cosx;

в) y = tgx.

3. Функція y=arcos x парна чи не парна:

а) парна;

б) не парна;

в) ні парна, ні непарна.

4. Яка область визначення функції y=arcos x:

а) вся числова вісь;

б) проміжок (-1; 1);

в) проміжок (-p/2; p/2)?

5. Обчислити arcsin 1:

а) p/4;

б) p/3;

в) p/2;

г) p;

д) p/6.

6. Яка множина значень функції y=arcsin x:

а) х є R;

б) х є (0; p);

в) х є (-p/2; p/2);

г) х є (-1; 1)?

7. Якою є функція y=arcsin x:

а) спадною;

б) зростаючою;

в) не монотонна;

г) то зростає, то спадає?

VII. Домашнє завдання

Підготуватися до тематичної контрольної роботи.

1. Розв'язати рівняння:

а) ctg(x=p/3) = 1;

б) 1-cosx = 4sin2x;

в) sin2x-sin2x = 0.

2. Розв'язати систему рівнянь:

sinx*siny + cosx*cosy = 1;

sinx*cosy + cosx*siny = ½.

Освіта.ua
09.10.2008

Популярні новини
Законопроект «Про освіту» схвалений комітетом Ради Комітет з питань науки і освіти передав у ВР до прийняття в цілому проект закону «Про освіту»
Учителів найменше цінують у Києві, – дослідження Повага до вчителя напряму залежить від розмірів населеного пункту та статі й віку опитаних осіб
Школи відмовляться від карального оцінювання, - Гриневич За словами міністра, у Новій українській школі буде створено стимулюючу систему оцінювання
Оприлюднено нові програми для 5-9 класів Міністерство освіти затвердило оновлені навчальні програми для учнів 5-9 класів

Щоб отримувати всі публікації
від сайту «Osvita.ua»
у Facebook — натисніть «Подобається»

Osvita.ua

Дякую,
не показуйте мені це!